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The successive approximations to a structure, given by the method of steepest descents, converge 
to the true values of the parameters at a rate which depends very markedly on the scales of repre- 
sentation chosen for these parameters. The importance of this is discussed in debai] and transforma- 
tions are derived which secure the optimum rate of convergence and at the same time make all the 
parameters mathematically equivalent. The application of these transformations leads to a simple 
formula for the corrections ei, which has considerable advantages ever existing formulae for steepest 
descents. An illustration of ~ho use of this formula is given from the derivation of the structure of 
the hexagonal ~-phase in the Ag-Zn alloy system. 

Introduction 

I t  has been suggested (Booth, 1947) that  the method of 
steepest descents when applied to the analysis of crystal 
structures by X-rays has several advantages over the 
standard methods, notJably a considerable saving of 
time and labour and the ability to obtain the structure 
from only a limited number of reflexions. However, a 
consideration of the rate of convergence of successive 
approximations to the actual values of the parameters 
is essential for the complete development of the 
potentialities of the method. 

Briefly, the method of steepest descents consists in 
first forming the residual 

R =  Z W~(¢o-¢o)L 
h k l  

where the q~'s represent any single-valued, differentiable 
function of the atomic parameters xa, x~, ..., x,, ..., x~. 
(The parameters are not necessarily restricted to 
position co-ordinates.) ¢o is the observed yalue of ¢, 
and ¢~ the corresponding calculated value, while W 9' is 
the weight allotted to 'any one value of (¢o-¢c) 2. The 
best values of the parameters are to be obtained by 
minimizing R. R, being a function of the n variables 
x~, can be represented by constant-R surfaces in n- 
dimensional space. The essence of the method is that  
successive approximations are obtained by moving 
along grad R (i.e. the normal to the R contours) towards 
lower values of R. This process is indicated in Fig. 1 (a) 
for two variables; P0 represents the initial values of 
x a and xg, while/)i ,  Pz represent the values obtained 
after one and two descents respectively. (It should be 
noted that  a steepest descent in the strict mathematical 
sense implies descent along the geodesic shown by the 
broken line in Fig. 1 (a). In a numerical problem, 
however, the nearest approach to this is by means of 
the successive descents to P1, Pz, -...) 

A little consideration will show that  the distances of 
the successive approximations P1, Pz, ..., from 0 will 

depend on the axial ratio of the contours, which are 
approximately elliptic in the neighbourhood of O. I t  
is obvious that  the slope of the normal to the R contour 
at P~ is the same as the slope of the corresponding normal 
at P0- Thus successive pairs:of descents to  Pa,/)4, -.- 
will behave in the same way as the first pair (to/)1 and 
P~) and we may, therefore, take some function of 
OP2/OP o as a measure of the residual fractional error 
in the parameters after one descent. The correct function 
to use is given by the following considerations: 

I t  can be shown (eft equation (1) below) that  

e~ d 1 
~ + ~ = ~  ( R - R ~ ) ,  

where the e's are the errors in the respective para- 
meters, Rm is the absolute minimum value of R, and 
b is a constant. For a = b this reduces to 

. a 2 

/e~ ± e ~ - - -  (R - R~). 
1 7 -  2 1 - - ] C  2 

Thus ~(R-R~)  gives a measure of the root-mean- 
square error in the parameters, which is certainly valid 
for small deviations of p (=a/b) from unity, and may, 
for simplicity in calculation, be extended .k) hold for 
larger deviations of p. I t  should be noted here that  
values of p between J.0 and 1.5 are sufficient to indi- 
cate the slow convergence for p 4:1 (cf. Table 1 below). 
The residual fractional error after one descent is thus 

given by ~(R - -  R ~ n ) p  1 

r - -  

J(R-R~).o" 
Since a detailed analysis shows that  

(R-R~)p 1 (R-R~)p. 
(R-R~).0 (R- R~)p, 

this expression for r can also be put as 

tOP, i-' 
r= (R R,~)p.)=lOPe)" 

] ° 



I t  follows from the geometry of the similar elliptical 
contours tha t  V~ = (1 -- 1/,02) 2 

(1 +me/p ~) (1 + 1/m2p2) ' 

where p ( = a/b or b/a) is the axial ratio of the elliptical 
R contours, and m is the slope of the normal to the 
contour at  Po. I t  is to be noted tha t  the above expres- 
sion has the same value if l ip is substituted for p, or 
1/m for m, or both. Also 

r = 0  for "m--O and for l / m = 0 ,  

and r has a maximum for m = 1, when the above expres- 
sion becomes 

I I-1/p~ p-1/p 
r ~ =  1+1/p~ = p + l / p "  

The average value of r 2 (averaged over 0, where 
Q = a cos 0 and Q = b sin 0 g ive  the equation of the 
R contours) ca.n be easily obtained, and it is found that  

- i p-1/p i =j2r . 

Values of r ~  and ~/(r 2) are tabulated in Table 1 for 
variou~s values of p. 

Table 1. The max imum residual fractional error rm after 
one descent, and the corresponding root-mean-square 
error ~/(r~'), as a function of the axial ratio p of the 
R contours 

p 1.0 1.25 1.5 2.0 2-5 3.0 
r m 0 0.22 0.38 0.60 0.72 0.80 

~/(r ~) 0 0.16 0.27 0.42 0.51 0.57 

Table 1, together with Fig. 1 (a) and (b), clearly 
indicates the desirability of keeping p very nearly unity. 
Also, it is clear tha t  when p = 0 the geodesic becomes 
a radial line and coincides with the path of the first 
descent POP1, which now brings P~ into coincidence 
with O. 

Similar considerations apply to n-dimensional R 
contours, except tha t  the mathematical formulation is 
more complicated. By setting up the equation of the 
normal at P0 and finding the condition for its being a 
tangent to another contour (the point of contact being 
P1), one obtains 

(R Rm)pI - ~ ] -  (~=~0 _ a ~ /  
( r ~ ) .  = 

( R - R ~ ) P °  [ Z  eT] n ~. 

where the ei's are the errors in the parameters and the 
ai's the corresponding.axes of the R contours. (The 
subscript for (r~')~ is used to avoid confusion with r ~ for 
the two-dimensional ease.) On simplifying and putt ing 
el la  i = t i and a i = g )~ Pi, this becomes 

i v tgt~ 
2 X.~ ~ 2 _ 2  

(r2) n - -  i . i "  ~i ~i" \f)i" Pi  ] 

~ a 4] 

A C 2  
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A considerable simplification can be effected ff we 
consider only small deviations of the ai's from their 
mean value ~. In  this case we can write Pi = 1 + 3 i and 
therefore (Pi/Pi'-Pi,/Pi) ~ 2(3 i -  $i'). We can also put  
a~ and ai, equal to ~ in the remaining factors, and obtain 

½ E ti2ti"2 4((~i__3i,)2 
i~:i" 

P0 

)Q 

(a) 

I x2 

X~ 

(b) 
Fig. 1. (a) Ell iptical  R contours  for two pa rame te r s  x 1 and  x 2. 

The lines of  two successive ' descen t s '  are  ind ica ted  by  
PoP1 and  P1P~. (b) Equi-axia l  R contours  for two pa rame te r s  
x~ and  x~. The first descent  brings P to 0,  the  posi t ion for 
the  absolute  m i n i m u m  of  R. 

As, for large n, the ti's are not correlated to any appreci- 

able extent we can put  ~ 2 t/~ 1 titi,=(t~) (t~,). Using Y ~ t ~ - n '  
this gives 

i=Vi" 

n 
- 

Thus ~/{(r2)}n~ ~ / \ - - n - - /  

2 ~/(3/~) for large n. 

I t  is interesting to note tha t  in the two-dimensional 
case p_~ 1 + 235 for small 35 (3 i = 32 for n = 2) and there- 
fore " 

rmZ2$¢=2~/($-~) and ~/(re--)=rmN2~/2~/($~). 

N i\Pi" P i l  ) 
26 



406 O P T I M U M  c O N D I T I O N S  FOR C O N V E R G E N C E  OF S T E E P E S T  DESCE.NTS 

it follows that ,  for small ( p - l ) ,  the values of r~ in 
Table 1 may be taken as representative of {~/(r2)}~ if 
we put  

~/ ( \Pi"  P i l  ) 

N t \ P i "  P i l  ) 

For large deviations of the pi's from uni ty it can be 

shown tha t  {4(r~)}~ behaves like ~/(r ~) in the two- 
dimensional case and tends to a limit in the neighbour- 
hood of 1N2, the exact value being a function of the 
distribution of the p / s  about their geometric mean. 

I t  thus appears that  for rapid convergence of all the 
parameters to their final values the R contours should 
be as nearly equiaxial as possible. The transformations 
necessary to effect this will now be investigated. 

Derivation of transformations 

Let ¢c~ be the value of ¢c at  the'  absolute minimum 
of R. Then 

R =  Z W2(¢o-¢c) ~= Z W2{(¢o-¢cm) -~ ( ¢ c m - - ¢ c ) }  9' 
hkl hkl 

= Z w ~ ( ¢ o - ¢ o ~ y  + Z w~(¢o-¢0~)  ~ 
hkl hkl 

- 2 Z w ~ ( ¢ o -  ¢ ~ )  (¢o-¢0~) .  
hkl 

The last term becomes small in comparison with the 
others for a large summation, while the second term can 
be put  equal to R~, the absolute minimum value of the 
residual. (Obviously R~ is a function of the experi- 
mental errors in the ¢o's and will be zero only for ideally 
accurate intensity values and for a structure containing 
ideally perfect atoms.) Thus we have 

R -  R~=~]  W2(¢c-¢c~) 2. 
hkl 

I f  our initial values of the parameters are not very far 
from the correct ones, we can write 

where the ~xi's' denote the departures from the values 
of the xi's at the absolute minimum of R, and the 
higher terms of the Taylor expansion are neglected. 
I t  follows tha t  ). 

hkl \ i OXi 

z w 
hkl , i hkl i#i" 

The second germ becomes small in comparison with the 
first for a reasonably large number of reflexions, the 

summation ~ being carried out over a region sym- 
hkl 

metrical about the origin in the reciprocal lattice. 
Subject to this condition, we have 

• \ a ~ !  J 
"-- Z a~($xi) 9, (1) 

i 

where a/~= ~ W~(O¢c] ~ (2) 
hkl \ ~X i ] * 

Equation (1,) obviously represents an n-dimensional 
ellipsoid, which can be reduced to an n-dimensional 
sphere by means of the transformations 

' x~ = a i x ~ .  (3) 

Equation (1) then becomes 

R-R~n=Z($x~) ~. (4) 

(It is to be noted that  any transformation of the form 
t xi=aaixi, with a a constant, will effect the reduction 

of (1) to an n-dimensional sphere. Also, for a fairly 
large number N of reflexions, we have (Brunt, 1917, 
pp. 38, 58) 

a~i=~Wg(O¢c~2=~'~{h~kzW ~ I }  . \Oxi] (2a) 

where/? is a constant of the order of 2.0, whose value 
depends on the form of the .statistical distribution of 
W(Dedaxi). The use of (2 a) eliminates a very consider- 
able amount of labour.) 

Consideration of steepest-descents formulae 

In order to obtain from (4) the values of the corrections 
required for the x/s,  we shall make use of the elegant 
variation of the first-derivative formula for steepest 
descents suggested by Vand (1948a). The first deriva- 
tive formula for the corrections ei given by Booth 

0R ( 947), 
ox~t  ~ \Uxx~/ (5) 

is valid only if the minimum of R along the direction of 
descent is zero or, at any rate, small in comparison with 
the initial value of R. When this is not true, we can still 
use (5) provided we replace R by R - R  0, where R 0 is 
the minimum value of R along the direction of descent 
given by the components &R/Dxi of grad R. Equation 
(5) then becomes 

_~ i=2(R- -Ro)~ I z (aR]  ~ 
" O X i l  i \-~xi/ " (6) 

R 0 is evaluated by calculating the value of R at  the 
point A (Fig. 2) given by equation (5) and then using 
the formula RA 

t~°-- 1 + R.,~/Rp" (7) 

Formula (7) is derived on the assumption of a parabolic 
variation of R between P and A. Equations (6) and (7) 
together give the co-ordinates for the minimum some- 
what more accurately and with considerably less labour 
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than Booth's formula involving second derivatives at  
P,  viz. 

- e ~  = O~R OR O R  " (5a) 

• e 8x~Ox~, 8x~ 8xi, 

The use of (7), however, involves the assumption tha t  
the minimum of R along the direction of descent 
definitely lies between P and A. This will invariably be 
true if P is near the minimum. In any case, the error 
introduced by this assumption, when P is far from the 
minimum, is of the same order as the other errors in- 
herent in the formulation of the steepest-descents 
hwmulae (5) and (5a). 

R 

P lel A 

Fig. 2. Variation of R with l e[,  the distance moved along 
grad R in the direction of descent. R 0 is the minimum value 
of R along this line, while A corresponds to the position 
given by formula (5). 

Application o f  transformations to the 
steepest-descents formula 

We can proceed to apply the formula (6) in the trans- 
formed co-ordinates x~ given by (3) and obtain for the 
corrections in these co-ordinates 

R ~OR 2 { ~ 3  '~]OR(Xi) ~-~t 
, 2 (R- -  ~)v~ i , ~ i  10R 1 0R 

- - 6  i ~ 
[0R,) 2 ~(25x:) 9" - 2 8 x ; - 2 a i S x  i' 
\ axd  i 

whence the corrections in the original co-ordinates are 

, X W~(¢o-¢o) 8¢~ e i 1 OR hkZ OXi 
6 i --~ __ 

ai 2a~Sxi-- W 2 / ~ ¢ c 1 2  (8) 
akt \ ~x i / 

2 and OR/Sxi in terms of 8¢~/~xi, (on substituting for a~ 
etc.). The values of SCdOx i used in the derivation of the 
formula are those at the absolute minimum of R; more 
accurately, mean values over the path of the descent 
should have been used. We may, however, subject to 
the initial values of the parameters being near the 
minimum, use the values of 8¢~/0x i calculated with our 
assumed values of the parameters. Further,  (8) is 
strictly valid only if the summation ~ satisfies the 

h k l  
condition of symmetry  noted before when obtaining 
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equation (1). The necessity for this can be seen as 
follows: 

I f  ¢ = ¢(u), where u = 2n(hx + Icy + lz), 

0¢ °~8¢ 0¢ ° ,8¢ 8¢=2.z~, 
Ux = ~"~  ~ ' Yy = z " ~  Uu' a--; 

whence 
h k l  8y Oz h k l  \ O U ]  

which becomes small statistically when the summation 
extends from - K to + K, or from - L to + L, or both. 

I t  will be seen that,  in the majori ty of practical cases, 
this condition will be satisfied, at least approximately, 
and therefore formula (8) will be valid. 

A further condition is that  when x i and xi. refer to 
different atoms, a¢c/Oxi and O¢c/Ox i, should not always 
be of the same sign. This implies good separation of the 
electron-density peaks in three-dimensional space. I f  
the number of reflexions used is so small tha t  an atom 
lies well within the first diffraction minimum (James, 
1948) surrounding another, it is best to t reat  the two as 
one unit situated at their centroid. This, however, is 
mainly of theoretical interest. 

Discussion and application o f  formula 

A noteworthy feature of (8), apart  from the fact tha t  
it secures the maximum rate of convergence to the 
correct values of the parameters, is that  the value of Rm 
no longer appears in the formula; as, indeed, it should 
not, being a function of the experimental errors. 

Furthermore, the expression for e i now involves 
derivatives with respect to xi only, thus permitting the 
refining of each parameter individually. In  addition, 
the exact equivalence of all the parameters (shown by 
the transformed equation (4)) permits the introduction 
of additional parameters of a different nature, for 
example the degree of order in alloys, for which the 
scale of measurement selected is in no way compatible 
with tha t  used for the position co-ordinates. The use 
of (8) in such a case automatically adjusts the value 
of the transformation constant ai so as to make the 
R contours equiaxial and to secure simultaneous 
convergence of all the parameters to their final values. 

The behaviour of (8), when the errors in the assumed 
parameters are such that  the higher order terms of the 
Taylor expansion of the ¢c's can no longer be neglected, 
is particularly interesting. I t  is easily seen that,  in 
general, (8) is equivalent to applying the first-derivative 
formula (5) to the function R'  = R - Rm (after applying 
the transformation (3)). This makes (8) behave like 
(5) for R>> R~ and like the second-derivative formula 
(5a) for R, , ,R~ .  Thus, the use of (8) eliminates the 
necessity for changing over from Booth's formula (5) 
to his formula (5a) as the absolute minimum of R is 
approached in successive descents, while the trans- 
formations (3) (used in the derivation of (8)) greatly 
reduce the number of descents required. 

Fig. 3 is typical of the two-dimensional behaviour of 

26-2 
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the R contours at large distances from 0. In the figure 
PIP1, P~P~. and PaPa represent the refinements of the 
parameters effected by the application of (8) at P~, P~ 
and Ps respectively. I t  is clear that  within a circle 
centre 0 and radius of the order of ½0S, (8) converges 
rapidly to O, while the convergence is very slow in the 
vicinity of S. (At points in the sector A'ISA'~, all for- 
mulae will converge not to 0 but towards another 
m i n i m u m  of  R a t  0 ' . )  H o w e v e r ,  i n  c o m m o n  w i t h  o t h e r  
methods for structure analysis from X-ray data, the 
use of (8) assumes a knowledge of the relative phases 
(or signs) of the" F's.  I t  is probable that  •when the 
distance OP is at all large, our lack of knowledge of 
these phases would become the dominant factor 
governing the convergence of the formula. Another 
important factor influencing the convergence for large 
values of OP is the assignment of the weights W, which 
is connected with the choice of the function ¢. In the 
neighbourhood of 0, however, the exact values allotted 
to the weights have little effect on the convergence. I t  
is hoped to discuss some of these aspects of the problem 
in a further paper. 

s • 

A2 

A, ' A,' 

A~ 

Fig. 3. Schematic representation in two dimensions 
of R contours for large distances from O. 

I f  formula (8) is written as 

9¢° ~ ~ , j g C A  ~. 
Z W~(qSo-qSc)~ - - -=  i2L t4'/~---/ , (8a) 
hkl OXi , hkl \GXi ] 

it is seen that  this is very similar to the result obtained 
by the method of least squares when the ¢c's are linear 
functions of the variables xi. The method of least 
squares was applied by Hughes (1941) to the refinement 
of the structure of melamine. He begins with an 
equation of the type 

_ (9¢° 9¢° 0¢o ,9¢°  

The normal equation for ei in the solution by least 

squares of a number of such equations (for different 
re flexions) is 

i.e. hkg~ W2(¢°-¢c)x--=ei~vxi hkg ~axi/ 

+ Z '  ~i ,Z w ~ a¢°~¢~ (9) 
i" hkl ~Xi 9ggi" ~ 

where ~ '  implies that  the term for i' = i is to be omitted. 
i' 

I t  is at once apparent that  (9) simplifies to (8 a) when the 

cross-product terms ~ W ~'-~ 
¢ N  / 

hkZ vxi " ~xi-----. are negligibly small, 

i.e. when the normal equations are orthogonal. (It 
should be noted that statistical fluctuations in the 
values of these terms introduce a small error ¢~ in the 
value of ei given by (Sa). If  N is the total number of 
reflexions used, the root-mean-square value of o'i/e i is 
a function ofn /N and is small for N>>n.) 

I t  thus appears that  when the R contours have been 
made equi-axial by means of the transformations (3), 
the steepest descent along the now radial geodesic is 
identical with the application of the method of least 
squares. The use of equation (8 a) retains the advantages 
claimed by Hughes for the method of least squares, 
namely: 

(1) The method is not subject to errors caused by 
diffraction effects in Fourier syntheses. 

(2) Somewhat better resolution is attainable than 
in Fourier syntheses. This is a consequence of the fact 
that  the diffuse electron-density distribution of an 
atom is taken into account by being reduced to a point 
scatterer of strength f. 

(3) A limited number of reflexions can be used to 
obtain the values of the parameters. Doubtful F values, 
such as those subject to extinction, can be ignored or 
given less weight. In this connexion it should be 
remembered that  in "order to obtain trustworthy 
estimates of the corrections, ei, the number ofreflexions 
used should be considerably greater than the number 
of parameters involved. 

This latter is particularly important when (8) is used, 
because of the statistical fluctuations previously 
referred to. When n/N is of the order of ½, it may be 
advisable to apply the transformations (3) directly and 
then use the ordinary steepest-descents formulae; 
alternatively, refinement may be carried out by the 
method of least squares. 

I t  is perhaps worth remarking tha t  the methods of 
least squares and steepest descents as well as formula 
(8) are subject to errors due to neglect of derivatives of 
the second and higher orders. This, however, is not 
serious in the final stages of refinement of the para- 
meters. 

The above formulae have been successfully used in 
the determination of the structure of the ~-phase of the 



A g ,  Zn alloy system (Edmunds & Qurashi, in prepara- 
tion). The ~-phase is hexagonal  with 27 atoms to the  
uni t  cell and exhibits a certain amoun t  of ordering. 
I n  order to take  this into account,  order parameters  for 
the  various atomic positions are introduced in the form 
x=f / f~ ,  where f ~ =  ½(fAg+fzn)" and f represents the 
effective scattering factor for the part icular  a tomic 
position. As the  s t ructure is derived from powder 
photographs,  it  is convenient  to use the  funct ion 
¢ = E ( F / f , J  2, where the summat ion  extends over all 
the  reflexions which have the same Bragg angle. As an  
i l lustrat ion of the capabilities of the  method,  the  
calculations for four parameters  and using only a few 
reflexions are set out  in Table 2, where q~xi has been 
wri t ten  for a¢/ax i. 

The weight W for these refiexions varies from 0"11 to 
0.09, and  has been put  equal to 0-10 th roughout  for 
simplicity. The quant i t ies  ~ W2¢~ have been obta ined i 

hkl  

by means of the formula (2 a), viz. 

( ~Zw~¢~=~ hZ W I¢~1 
where N is the  number  of reflexions and /?  is a constant  
which has the  value 2.3 in the  present  case. This pro- 
cedure effects a considerable saving in labour and, 
provided N is sufficiently large, gives the  required cor- 
rections t o  the co-ordinates to wi thin  5 or 10 %, i.e. 
bet ter  t h a n  0.005 A. in the above example. (x~, x2 and 
x a are posit ion co-ordinates, while xa is an order para- 
meter  defined as above.) 

Table 2(b) clearly brings out  the  fact  t h a t  the  
original R contours are far from being equiaxial,  e.g. 

hbil 
2023[ - 
44~1I 
53~1~ 
7071] 
2193 
71g0 
62gl 
6062 
30~3 
43~2 
22~3 
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¢~2 ~ ¢~3 =200.  Consequently,  the  or- 
hkl  hkl 

dinary  steepest-descents formula (ha) would have 
yielded a value for e 3 about  200 t imes smaller t h a n  the  
correct one. Similar considerations apply  to the  order 
parameter  x 4. In  deriving the  actual  s t ructure of the  
~-phase, al together about  60 reflexions were used. The 
corrections furnished by  the  last  descent, from which 
the  above i l lustrat ion is taken,  gave substant ia l ly  good 
agreement  between the observed and calculated 
s tructure factors, the  mean  factor of rel iabil i ty 

I] Fobs. I--I F~a~¢. II being 0.12. 

I t  may  be ment ioned t ha t  a formula somewhat  
similar to (8) has been derived by Vand (1948b) by  a 
stat is t ical  method  in the course of ~ development  of 
a harmonic  method for obtaining the corrections Q. 

I am indebted to Dr I-I. Lipson and Dr I. G. Edmtmds  
for their  interest  and for valuable criticism and sug- 
gestions. I also wish to t h a n k  Dr V. Vand for a number  
of very  helpful suggestions. The above work was made 
possible by  a grant  from the  Government  of Pakis tan .  
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Table 2. Calculations for some ei's for the ~-phase of Ag-Zn,  using only a few reflexions 

(a) 

The factor 1/4n in the quantities ~ exi arises because ¢~i is of the form {cos 2n(hxa+ kxb + lxe)+...}2. 

W W W W W 2 W 2 W 2 
¢0 ¢o ~=¢o-¢~ ~ ¢~1 ~ ¢~" ~,  ¢~ ~ ¢~ ~-~ ~¢~ ~ ~¢~ ~ ~¢~ 

56.0 36.7 + 19-3 + 0.2 -- 9.4 --0.23 --0.89 + 0.5 -- 18.2 --0.44 

104.0 107.7 -- 3.7 --10.2 +22.2 --0.42 +1.86 + 3.8 -- 8.2 +0.16 
12.0 12.8 -- 0.8 + 2.9 -- 0.3 --0.29 --1.10 -- 0.2 0"0 +0.02 
0.0 2.0 -- 2.0 + 0-2 + 3.0 0.00 +0.26 0.0 -- 0.6 0.00 

73.0 81.4 -- 8.4 + 9.2 + 9.8 +0.13 +2.72 -- 7.7 -- 8.2 --0.11 
80"4 50.4 +30.0 -- 3.6 --16.6 0.00 +2.00 --10.8 --50.0 0.00 
0.0 0.9 - -- 0.9 0.0 0.0 --2.50 0.00 0.0 0.0 +0.07 
8.2 35.2 --27"0 +10.2 + 1.3 0.00 +1.08 --27.6 -- 3.6 0.00 

52-0 55.3 -- 3.3 -- 2.1 -- 5.6 +1.22 0.00 + 0.7 + 1.8 --0.40 

W $ 

--1.7 

--0"7 

+0.1 
0.0 

--2.3 
+6.0 

0.0 
--2*9 

0.0 

(b) 
x i Xl  x2 x3 x4 

z W hk~ 41r [¢xi[ 38-6 68"2 4"79 9-91 

W2 ,~2 381 1186 5-86 25"0 
hkl 

W 2 -4-~ 3¢xi - 41-3 -- 87.0 - 0.70 -- 1.5 

6 i - 0"008e - 0.005s -- 0"0095 -- 0"030 
ei _ 0.065A" _ 0.044A" -- 0.027 A. 3.0 % 


